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Robust soliton clusters in media with competing cubic and quintic nonlinearities
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Systematic results are reported for dynamics of circular patterns~‘‘necklaces’’!, composed of fundamental
solitons and carrying orbital angular momentum, in the two-dimensional model, which describes the propaga-
tion of light beams in bulk media combining self-focusing cubic and self-defocusing quintic nonlinearities.
Semianalytical predictions for the existence of quasistable necklace structures are obtained on the basis of an
effective interaction potential. Then, direct simulations are run. In the case when the initial pattern is far from
an equilibrium size predicted by the potential, it cannot maintain its shape. However, a necklace with the initial
shape close to the predicted equilibrium survives very long evolution, featuring persistent oscillations. The
quasistable evolution is not essentially disturbed by a large noise component added to the initial configuration.
Basic conclusions concerning the necklace dynamics in this model are qualitatively the same as in a recently
studied one which combines quadratic and self-defocusing cubic nonlinearities. Thus, we infer that a combi-
nation of competing self-focusing and self-defocusing nonlinearities enhances the robustness not only of vortex
solitons but also of vorticity-carrying necklace patterns.
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I. INTRODUCTION

Optical solitons, that is, self-supporting localized lig
pulses and beams, have been predicted and observed in
ous physical settings over the last three decades@1–3#. They
appear as one-dimensional~1D! temporal solitons in nonlin-
ear fibers, 1D and two-dimensional~2D! spatial solitons
~self-localized light beams! in planar and bulk waveguides
and three-dimensional 3D spatiotemporal solitons~alias
‘‘light bullets’’ @4#! in bulk optical media. The ‘‘bullets’’ are
completely localized traveling pulses of light, their 2D cou
terparts being possible too as spatiotemporal solitons in
nar waveguides~in fact, the only species of the light bullet
that were thus far created in a real experiment were quas
solitons in bulk samples@5#!. Recently, interest in this are
has been extended to the study of complex soliton struct
composed of several interacting solitons in the form
necklace-ring beams@6,7# in self-focusing nonlinear media

The existence of spiraling self-localized structures
Hamiltonian systems described by the cubic nonlinear Sc¨-
dinger ~NLS! equations was analyzed in Ref.@8#. Later, a
rigorous criterion for the stability of solitary-wave structur
in Hamiltonian systems carrying orbital angular moment
was reported@9#, which is applicable to stationary structure
with a broken rotational symmetry.

Two-dimensional soliton clusters in saturable se
focusing media, which were recently introduced in Ref.@10#,
are ring-like soliton complexes in bulk media, having
staircase-like phase distribution that induces a nonzero
bital angular momentum leading to rotation of the clust
They are generally metastable~i.e., in the absence of an
perturbations they can propagate stably over many diffr
tion lengths in the saturable medium!, eventually experienc-
ing a symmetry-breaking instability. However, initial pertu
1063-651X/2003/68~4!/046612~8!/$20.00 68 0466
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bations destabilize the cluster after passing only a f
diffraction lengths, and it eventually disintegrates into a
of isolated 2D solitons. Soliton clusters in two and thr
dimensions, respectively, may be viewed as a nontrivial g
eralization of the 2D bright or dark vortex solitons@11–16#,
and 3D ‘‘spinning’’ solitons~vortex tori! @17–19#. The con-
cept of soliton clusters has been also introduced in the st
of non-Hamiltonian nonlinear systems such as extern
driven optical cavities@20#. In such systems, the simple
example is a two-dimensional clustered pattern observe
the transverse plane@20#.

These new concepts of complex soliton structures m
apply to other nonlinear physical media, including the p
diction of Skyrmions@21# in a two-component Bose-Einstei
condensate~BEC! @22# ~for a recent comprehensive revie
of BEC of atomic gases in a trap, see, for example, R
@23#!. We mention recent progress in the generation of to
logical states~vortices! carrying different angular moment
@24# in a two-component BEC@25# and in a stirred BEC
@26#, the observation of a regular triangular vortex lattice
rotating BECs @27#, formation and propagation of brigh
matter-wave solitons trains in a quasi-1D optical trap@28#,
the theoretical prediction that a matter-wave bright solit
can be stabilized in 2D geometries by causing the nonline
ity strength to rapidly oscillate between positive and negat
values~through the Feshbach resonance! @29,30#; still earlier
works on vortices and solitons in BECs were reviewed
Ref. @31#. Closely related topics are the recently introduc
concepts of globally linked vortex clusters in nonrotati
BEC with attractive interactions@32#, of ring dark solitons
and vortex necklaces in BECs@33#, and of soliton ‘‘mol-
ecules’’ in optics and hybrid atomic-molecular BECs@34,35#.
The soliton-cluster concept is also relevant to the field
mixed atomic-molecular BECs@36–43#.
©2003 The American Physical Society12-1
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In media with pure quadratic or cubic nonlinearity, solito
clusters always tend to self-destroy through expansion
collapse, or, at best, they exist as metastable states whic
broken up too by small perturbations@6,7,10,44–47#. In the
presence of two competing optical nonlinearities~self-
focusing and self-defocusing ones!, the instability may be
greatly weakened, and the soliton complexes may propa
stably over huge distances even in the presence of ran
perturbations. The first example of the formation of both
and 3D robust soliton clusters was put forward in the cas
competing quadratic and cubic nonlinearities; these sol
complexes are multicolored, they carry nonzero orbital an
lar momentum and are linked via a staircase-like phase
tribution @34,48#. A fact which helps to understand the stab
lization of these clusters is the existence ofcompletely stable
2D bright vortex solitons@49# and 3D stable vortex tori@19#
in the same media; intuitively, the clusters may thus be c
sidered as fragmented counterparts of these stable obje

Recently, it was shown that similar stable bright 2D a
3D spinning solitons, carrying nonzero orbital angular m
mentum, also exist in media with competing cubic and qu
tic nonlinearities@50–54,18#, which suggests searching fo
quasistable soliton clusters in the multidimensional N
models with the competing self-focusing cubic and se
defocusing quintic nonlinearities. A purport of such an inve
tigation is to understand whether the stabilized clusters
generic objects, by comparing their basic properties in
quadratic-cubic and cubic-quintic~CQ! models~this way, it
has been demonstrated that the above-mentioned s
‘‘spinning’’ solitons are generic indeed, in both 2D and 3
cases!. Besides that, the investigation of the clusters in
CQ medium expands possibilities for experimental creat
of such structures. In this context, it is worth noticing tha
was recently suggested that dielectric response of severa
ferent media may be modeled by the CQ nonlinearity,
companied by significant two-photon absorption@55#. The
objective of this work is the search for quasistable soli
clusters in the 2D model with the CQ nonlinearity.

The rest of the paper is organized as follows. In Sec.
2D necklace-like soliton complexes in the CQ medium
constructed. Direct numerical simulations of their propa
tion, which proves that they are quasistable indeed, are
sented in Sec. III. The results of the work are summarize
the concluding section.

II. CONSTRUCTION OF TWO-DIMENSIONAL SOLITON
CLUSTERS IN CUBIC-QUINTIC MEDIA

The equation governing the evolution of the field is
modified NLS equation of the CQ type, written in a norma
ized form

iuZ1uXX1uYY1uuu2u2auuu4u50, ~1!

wherea is a parameter which characterizes the strength
the quintic nonlinearity that can be scaled out from this eq
tion ~see below!. This generic model, in its 1D and multid
mensional variants, appears in various branches of nonli
science; for earlier work on this issue in the context of no
linear optics, see, for example, Ref.@56#. In the most typical
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case, Eq.~1! governs the spatial evolution of the time
independent complex amplitude of the electromagnetic w
along the axisZ in a bulk medium with transverse coord
natesX andY; soliton solutions to be found in this case the
represent spatial solitons, i.e., self-trapped light beams in
bulk medium.

Before proceeding to the necklace patterns, we revisit
recently investigated problem of constructing spinnin
soliton solutions to Eq.~1!. To this end, stationary solution
are looked for in the form

u5U~r !exp~ iSu!exp~ ikZ!, ~2!

wherer andu are the polar coordinates in the (X,Y) plane,k
is the wave number~the propagation constant!, and the inte-
gerS is the topological charge of the soliton~which is some-
times called ‘‘spin’’!. Waveform~2! exhibits nonzeroz com-
ponent of the orbital angular momentum~see below! if S
Þ0.

The amplitudeU may be assumed real, and it then obe
an equation

U91r 21U82S2r 22U2kU1U32aU550, ~3!

where the wave numberk parametrizes the family of station
ary solutions.

Equation~1! conserves a dynamical invariant, which h
the meaning of the net power of the light beam:

E5E
2`

` E
2`

`

uu~X,Y!u2dXdY. ~4!

Another dynamical invariants are the Hamiltonian,

H5E
2`

` E
2`

`

@ uuXu21uuYu22~1/2!uuu41~1/3!auuu6#dXdY,

~5!

momentum~equal to zero for the solutions considered in th
work! and thez component of the angular momentum,

Lz5E
2`

` E
2`

`

~]f/]u!uuu2dXdY, ~6!

f being the phase of the complex fieldu. Using Eq.~3!, one
can readily find thatLz5SE, and

H52~2p/3!aE
0

`

U6~r !rdr . ~7!

Notice that the parametera can be rescaled,a→ã[la

(l is an arbitrary positive scaling factor!, by defining Z̃

5lZ, X̃5l1/2X, Ỹ5l1/2Y, Ũ5l21/2U. This leads to the
corresponding scaling ofk, E, andH:

k̃5k/l; Ẽ5E; H̃5H/l.

The existence region for the 2D solitons that are sought
in form ~2! is 0,k,koffset

(2D) '0.18/a, regardless the value o
the topological charge~spin! @50,57#. Note that a soliton so-
2-2
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ROBUST SOLITON CLUSTERS IN MEDIA WITH . . . PHYSICAL REVIEW E68, 046612 ~2003!
lution to the 1D version of Eq.~1! is known in an exact form,
the corresponding offset wave number beingkoffset

(1D)

53/(16a)[0.1875/a, so that the above value ofkoffset
(2D) is

quite close to it~see Ref.@57#!. Throughout this work, we fix
a50.2.

One-parameter families of the 2D spinning solutions c
be found in a numerical form. The solitons have the form
a ring vortex with a hole in the center~since the field must
vanish;r uSu as r→0). In accordance with the results pr
dicted by means of the semi-analytical variational appro
mation developed in Ref.@50# ~see also Ref.@57#!, the solu-
tions exist provided that their energy exceeds a cer
threshold value. As a test for the accuracy of numerical co
putations, we used a relationship which can be obtained
rectly from Eq.~3!:

kE5pE
0

`

rU 4~r !dr2~2p/3!aE
0

`

U6~r !rdr . ~8!

To quantify the 2D solitons, in Fig. 1 we show the no
linear wave numberk and the HamiltonianH for the solitons
with topological chargeS50, S51, andS52 versus their
power E. In the figure, continuous and dashed lines cor
spond to branches that, respectively, have been found t
stable and unstable@52–54#. Moreover, a recent work@53#,
which was carried out by means of very accurate numer
methods applied to the computation of stability eigenvalu
has shown the existence ofstable2D spinning solitons with
higher (.2) values ofS in the CQ model, the width of the
stability region decaying withS according to an empirically
found law, const/S2. Note thatk corresponding to the vorte
solution monotonously increases withE, showing saturation
~to the above-mentioned limiting valuekoffset

(2D) ), at large val-

FIG. 1. The propagation constantk ~a! and HamiltonianH ~b!
of the two-dimensional solitons vs the powerE. Here and below,
the scaling factora in front of the cubic term in Eq.~1! is fixed to
be 0.2.
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ues of E. It is also relevant to mention that the minimu
energy necessary for the existence of the soliton drastic
increases withS. Numerically, exact values of the thresho
are Ethr511.734, 48.379, and 88.338 forS50, 1, and 2,
respectively.

In fact, all the results for the stationary spinning solito
in the present model were already obtained in previo
works, see above. The nonlinear states that we investiga
what follows are circular soliton necklaces, which we co
structed starting with a superposition ofN fundamental~non-
spinning! solitons set along a circumference of some rad
R0, with a fixed phase difference between adjacent ones
that the overall phase change along the circumferenc
2pM , whereM is the net topological charge of the solito
complex@10#. Thus, the initial ansatz is

u~Z50!5 (
n51

N

U0~ urW2rWnu!eifn, ~9!

where U0 is the stationary fundamental (S50) soliton, rWn
are positions of the soliton centers chosen as specified ab
and the soliton phases at these points arefn52npM /N.
The parameters that control the dynamics of the soliton c
ters are the topological chargeM, the number of ‘‘beads’’N
forming the ‘‘necklace,’’ its initial radiusR0, and the power
E of each constituent soliton.

Note that ansatz~9! implies that the phase distribution i
the initial cluster has the shape of a staircase. Below, we
also consider another possibility, with a continuous init
phase distribution that has a form of a ramp with a const
slope,

u~Z50!5 (
n51

N

U0~ urW2rWnu!eiM u, ~10!

whereM is, as above, the net vorticity, andu is the angular
coordinate in the (X,Y) plane.

Recall that the vortex solitons are stable in the pres
model if their power exceeds a threshold value@52–54#. We
therefore focused on the study of clusters whose initial to
power exceeds the corresponding stability-threshold valu
the vortex soliton, in anticipation that, for smaller values
the net power, the necklaces have no chance to be st
Because the stability threshold for theS51 vortex soliton at
a50.2 is Ethr'180 ~see Fig. 1!, we have considered, fo
instance, the clusters with net topological chargeM51,
composed ofN54,5, and 6 fundamental solitons, each ha
-

FIG. 2. The effective interac-
tion potential vs the radius for the
necklaces composed ofN54, 5,
6, and 12 solitons, at different val
ues of the vorticity carried by the
pattern.
2-3
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MIHALACHE et al. PHYSICAL REVIEW E 68, 046612 ~2003!
ing the powerE580, so that the net power of the cluster
well within the stability region of the vortex soliton with th
topological chargeS51.

For ansatz~9!, the cluster’s interaction Hamiltonian~alias
the effective potential of the interaction!, defined as
H(R0)/uH(R05`)u, was numerically computed as a fun
tion of R0 and M @recall the Hamiltonian is defined in Eq
~5!#. This quantity gives important clues concerning the e
istence and stability of bound states of solitons~see Refs.
@58# and @10#!. The result is that, for the cluster withN54
constituents, the interaction Hamiltonian does not have
minimum for anyM ~see Fig. 2!, but for N55, N56, and
N512, local minima of the Hamiltonian are found forM
51 ~as well as for some other values ofM ), which suggests
the existence of quasistable necklace patterns in these c

III. ROBUSTNESS OF THE SOLITON CLUSTERS IN THE
CUBIC-QUINTIC MEDIUM

In order to check the predictions following from the com
putation of the effective potential, we directly simulated E

FIG. 3. Propagation regimes of the soliton clusters withN56
and different values of the net vorticityM ~in the absence of noise!.
All the clusters in this plot and in the following ones are built up
solitons with the powerE580.
04661
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~1! by means of a finite-difference scheme based on
Crank-Nicholson method, followed by the Newton-Picard
erative technique and the Gauss-Seidel method for solv
the resulting linear system of equations. To achieve go
convergence, we needed, typically, five Picard iterations
eight Gauss-Seidel iterations. In most cases, we emplo
the transverse-grid stepsizeDX5DY50.3 and the longitudi-
nal stepsizeDZ50.003. Transparent boundary conditions
lowing the radiation to escape from the computation wind
were implemented, to prevent possible artificial effe
caused by radiation waves reentering the integration dom

The evolution of the cluster’s mean radiusR(Z) and of
the cluster’s mean angular velocityv(Z) was monitored.
These quantities were defined as follows:

R~Z![E21E
2`

` E
2`

`

~X21Y2!1/2uuu2dXdY ~11!

and

v~Z![Lz /I ,I[E
2`

` E
2`

`

~X21Y2!uuu2dXdY, ~12!

whereLz is thez component of the angular momentum, s
Eq. ~6!, andI is the cluster’s moment of inertia. Because t

FIG. 5. Breakup of a cluster composed of four solitons under
action of random noise~top row!, and robust evolution of a cluste
composed of five solitons~bottom row!. In both cases,M51 and
R054.5.
FIG. 4. The evolution of the
cluster’s mean radius~top row!
and mean angular velocity~bot-
tom row! for different values of
the vorticity M. Parameters are
same as in Fig. 3.
2-4
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ROBUST SOLITON CLUSTERS IN MEDIA WITH . . . PHYSICAL REVIEW E68, 046612 ~2003!
initial radiusR0 of the cluster is large, it is easy to see th
the initial value of the average radius~11! amounts toR(0)
'R0.

KeepingM51, we varied the initial cluster’s radiusR0
around the minimum value predicted by the effective pot
tial in Fig. 2. In this way, a range of optimum values ofR0
was found that minimize oscillations of the mean radius
the course of the propagation (z evolution!, which implies
that the cluster is a nearly stationary state. ForN56, the
optimum values are close toR056, whereas forN55, it is
R054.5. In Figs. 3 and 4 we show typical examples of t
evolution of the clusters composed ofN56 beads. These
necklace clusters are nonstationary: they gradually fuse
expand and rotate during the evolution.

In the special caseM5nN (n50,1,2, . . . ) thecluster ac-
tually has zero angular momentum, as the phase shifts
tween adjacent beads is a multiple of 2p, so it is tantamount
to being zero; in this case, the solitons attract each other
the cluster fuses into a single fundamental~nonspinning!

FIG. 6. The evolution of the mean radius~top row! and angular
velocity ~bottom row! in the clusters composed of four and fiv
solitons. Parameters are same as in Fig. 5.

FIG. 7. Evolution of the cluster over long distance in the pr
ence of input noise. The net vorticity isM51, the input radius is
R056, and the phase distribution in the initial cluster is in the fo
of the staircase.
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soliton ~see the first row in Fig. 3 and the first column in Fi
4, corresponding toN56 andM50).

The cluster actually has zero angular momentum also
evenN and M5(2n11)N/2 (n50,1,2, . . . ). However, in
this case the phase difference between adjacent beadsp
times an odd integer, hence the interaction between the
tons is repulsive~see Fig. 2!. Therefore, the clusters gradu
ally expand in this case~see the fourth row in Fig. 3 and th
fourth column in Fig. 4, corresponding toN56 and M
53).

When N56 and M52, the cluster has a true nonze
angular momentum and the propagation shows gradual
pansion and rotation~see Figs. 3 and 4!. When M51 and
N56, the potential is attractive~see Fig. 2!, however the
nonzero net angular momentum of the structure prevents
sion of the beads. In such cases, generic behavior is qua
eriodic expansion and shrinking of the cluster, which pers
over tens of diffraction lengths, as is shown in the seco
row in Fig. 3 and the second column in Fig. 4. The latter ca
may be naturally categorized as a truly robust one.

To further study the cluster’s robustness, we ran num
cal experiments, adding random noise to the input field c

-

FIG. 8. Same as in Fig. 7, but with the continuous ramp-l
phase distribution at the input.

FIG. 9. The evolution of the mean radius~top row! and angular
velocity ~bottom row! for the clusters composed of six soliton
with the input radiusR056. In ~a! and~c!, the initial staircase-like
phase distribution was used, whereas in~b! and~d! it was the ramp-
like distribution.
2-5
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FIG. 10. The evolution of clusters composed of six solitons in the presence of random input noise. Here, the net vorticity isM51 and
the input radius isR057. The initial phase distribution is the staircase-like one.
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figuration ~9! in two distinct ways:~i! multiplying it by @1
1r(X,Y)#, where r is a Gaussian random function wit
some variances ~usually we tooks50.1) and zero mean
value, or~ii ! multiplying it by @11e(r11 ir2)#, wherer1,2
are uniformly distributed random numbers in the interv
@20.5,0.5# ~usually we took 0.05<e<0.2). Typical ex-
amples of the evolution of the perturbed clusters compo
of 4 and 5 solitons are shown in Figs. 5 and 6. In the
examples, uniformly distributed noise with a moderate a
plitude e50.05 was added. The clusters composed of f
solitons do not survive the disturbed propagation over 1
diffraction lengths~they eventually break up into two sep
rate fragments!, whereas clusters withN55 show a remark-
able robustness over this and longer propagation distanc

We also compared the long-scale evolution of the clus
perturbed by the random noise in the cases when the p
mask, created by the initial phase distribution, had the st
case and ramp shapes, see Eqs.~9! and ~10!, and the propa-
gation distance was extremely large. The results are
played, for the staircase and ramp profiles and ident
initial intensity distributions, in Figs. 7 and 8, respective
Note that, in both cases, not only the propagation distan
are very large, but also the uniformly distributed input no
has a large amplitude,e50.2. We takeN56, M51, and the
input radiusR056, a value slightly larger than that corre
sponding to the minimum of the interaction Hamiltonian
this case~see Fig. 2!. In both cases, the clusters show a tre
to slow fusioninto a quasiuniform ring, i.e., a stable vorte
soliton, with the same value of the vorticity (S51, in the
cases shown in Figs. 7 and 8! which the original cluster was
given. The eventual fusion into the single vortex soliton s
a limit for the robustness of the momentum-carrying cluste
Figure 9 additionally shows comparison of the evolution
the cluster’s mean radius and angular velocity for the sa
two inputs. In both cases, we see quasiperiodic evolution
the soliton complex.

Further, in Fig. 10 we display the case when the init
cluster’s radius was increased fromR056 to R057 ~in this
case, only the cluster with the initial staircase-like phase
tribution is shown!. As is seen, the cluster survives about
diffraction lengths under the action of the input Gauss
noise ~with the variances50.1). However, the difference
from the situation shown in Figs. 7–9 is that, in the pres
case, the initial separation between the solitons forming
cluster is farther from that which corresponds to the equi
rium value predicted by the effective interaction Ham
tonian. This difference turns out to be essential: the soli
complex cannot eventually merge into a quasiuniform ri
instead, it yields to the self-demolition azimuthal instabili
see Fig. 10.
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Thus, the value of the cluster’s initial radius is a crucia
important parameter which determines its subsequent ev
tion. We have found that in the case of the cluster compo
of closely packedN56 fundamental solitons having the n
vorticity M51, with the initial radiusR056, the output
field pattern is a stable vortex ring with the topologic
chargeS51, even if the input phase was a staircase-like o
~see Figs. 7 and 9!. However, if the initial radius is increase
to R057, the input field distribution is far from that corre
sponding to the stableS51 vortex ring, and the cluster even
tually disintegrates into several fragments~see Fig. 10 for the
typical evolution over long distances in this case!.

IV. CONCLUSION

In this work, we have developed systematic dynami
analysis of circular patterns, built up of fundamental solito
and carrying angular momentum, in the 2D cubic-quin
model. Predictions for the existence of quasistable neck
structures were made in a semianalytical form, using the
fective interaction potential. Then, direct simulations ha
shown that, in the case when the initial pattern is far from
equilibrium configuration predicted by the potential,
quickly collapses into a single zero-vorticity soliton, or d
cays into a set of noninteracting solitons. However, if t
necklace is sufficiently close to a predicted equilibrium,
survives in the course of very long evolution, demonstrat
persistent oscillations around the equilibrium configuratio
This character of the evolution is not essentially disturbed
adding a large noise component to the initial condition.

The basic conclusions concerning the necklace dynam
in this model are qualitatively the same as in a recently c
sidered model combining quadratic and self-defocusing
bic nonlinearities. This makes it possible to infer that a co
bination of competing self-focusing and self-defocusi
nonlinearities stabilizes not only vortex solitons but al
vorticity-carrying circular multisoliton arrays.
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